
NONSTEADY HEAT TRANSFER OF A MULTILAYER WALL 

WITH UNEQUAL CONTACT AREAS BETWEEN THE LAYERS 

V. A. Alekseev UDC 536.248 

The nonsteady heat-transfer problem in a system of contacting bodies with 
unequal contact surfaces is solved. An example of using the solution for 
the case of thermal tubes is given. 

In modern equipment, especially in mechanical engineering and electronics, the trans- 
mission of the heat flux to the surrounding medium is often through a system of bodies 
which are in contact through surfaces of unequal dimensions. 

In a series of cases, the thermal model of this practically important system of bodies 
may be written in the form of a set of contacting plates (multilayer wall) with unequal di- 
mensions over the length and width and various contact surfaces relative to one another, 
the temperature of which only varies over the thickness of each layer in the direction of 
heat-flux motion (Fig. i). 

The difference here from the classical formulation of the problem of nonsteady heat 
transfer in a multilayer wall is that in the heat-transfer equations account must be taken 
of the difference in specific thermal fluxes transmitted to each layer. In the formulation 
here proposed, this difference is taken into account by introducing a dimensionless param- 
eter in the boundary conditions; this parameter expresses the ratio of the surface area 
of the given layer to the surface area of the first layer encountered by the scattered power. 

On the basis of the foregoing, the nonsteady heat transfer for an equivalent: one- 
dimensional thermal model is written in the form of a system of differential heat-conduc- 
tion equations for contacting layers with ideal contact at the boundaries 
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The boundary conditions for the contacting layers are 
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Fig. 2. Results of calculating nonsteady heat transfer in TT and compa- 
rison with experimental data: the curves correspond to calculation: (%1 = 

(TI - Ts)/(T1st - Ts), %5 =(Ts -Ts)/(Tsst - Ts); i) experimental points on 
the surface of the evaporation region; 2) at the condensation region. T, 
~ T, sec. 
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The initial conditions for all the layers are 

~ - - 0  T ~ = ~ ,  l < i ~ < m .  (3) 

The dimensionless parameter n i = Si/S I expressing the ratio of the surface area of the 
i-th layer to that of the first layer, to which the specific heat flux ql = P/S I is directly 
supplied, takes account of the difference in contact areas of the individual contacting 
layers. 

Thus, as a result of introducing the dimensionless parameter n i in the system of equa- 
tions, the mathematical description of the problem obtained reduces to the classical for- 
mulation of a multilayer wall. Its solution by the grid method is well known, but not al- 
ways convenient in practice; therefore, one of the possible approximate analytical solutions 
based on the method of instantaneous regular conditions for a multilayer wall [i] is pre- 
sented below. In this case, the heat-transfer process is divided ihto two periods: The 
inertial period and the regular period; this allows the duration of the first period to be 
determined analytically and the temperature field over the thickness of the multilayer wall 
to be calculated as a function of the time. 

Assuming that 

f i  = CiPi6iHi,  R i  : 6 i / k i l l i ,  R m  :=:l/~nm, 

the analytical dependences of [i] may be used to solve the problem of a multilayer wall. 

The use of the method is demonstrated for the example of thermal tubes (TT) with a low 
axial heat conduction of the body without a transport section and constant conductivity, 
working in evaporative conditions. 
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The thermal model of TT operating in evaporative conditions usually takes the form of 
two-layer plates (walls of the body and core); the first is the evaporation region, to which 
the constant heat flux q~ is supplied; the second is the condensation region, from which heat 
is extracted by the specified heat-transfer law to the surrounding medium. The thermal con- 
tact between the evaporation and condensation regions is by means of a vapor flux with a 
temperature that is constant over the whole length of the first channel; the heat-transfer in- 
tensity of this flux with the surface of the capillary structure tends to infinity, which 
allows boundary conditions of the fourth kind to be used for the surfaces of the evaporation 
and condensation regions [2]. 

Thus, the one-dimensional model of the TT may be written in the form of four isothermal 
layers with unequal contact surfaces: the wall of the evaporation region, the capillary 
structures of the evaporation and condensation regions, and the wall of the condensation re- 
gion (i.e., m = 4), the temperature field in which varies only over the thickness. 

In contrast to the solution considered in [2], the present version allows the length of 
the preregular (inertial) period of TT thermal conditions to be analytically estimated. Using 
this solution, the heat fluxes and temperature field over the thickness of all tlhe layers may 
also be calculated as a function of the time, i.e., the time for the TT to reach a steady 
state may be determined. 

By analogy with [i], the length of the inertial period is determined from the following 
expression 
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For TT, n = Sc/S e is the ratio of surface areas of the condensation and evaporation regions. 

The time for the regular period of TT thermal conditions to begin is determined directly 
from Eq. (4). 

In the regular period, the heat fluxes at the layer boundaries (qs, q4, q~, q2) and tem- 
peratures (T5, T,, T 3, T2, T z) are calculated as a function of the time from the analytical 
dependences 
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For simplicity, expressions are given here only for calculating the heat fluxes and temper- 
atures at the layer boundaries. 

The accumulation time x a is determined from the formula 
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The heating process ends when a steady state sets in; in this steady state, the amount of 
heat supplied to the evaporation region is equal to that removed from the condensation re- 
gion by the surrounding medium. 

For the steady state 

Tast--Ts = q l  + ;L., 13n ~,~n + ' ncz (8 )  

Tsst - -  ~ = qdn~. 

The order of calculating the TT heating to the steady state is as follows. From Eqs. (4) 
and (7), c I and x a are determined. If c a ~ ~I, the heat fluxes at the layer boundaries q~, 
q~, q3, q2 = f(x) and the temperatures T~, T 4, T 3, T 2, and T ! = f(x) are calculated from 
Eqs. (5) and (6) at the initial temperature T i = T s. If not, by analogy with [i], it is 
necessary to calculate the heat fluxes and temperatures for the layers at the end of the 
inertial period. As a result, the complete time picture of the transition of all the TT 

elements to steady thermal conditions is obtained. It may now be shown how the heating 

times of individual TT elements are calculated for the following conditions: the frame and 
capillary structure are made from stainless steel and the heat carrier is water; the scat- 

tered power is 15 W. 

The surface area of the evaporation region S e = S I = 1.29-10 -3 m2; that of the conden- 
sation region is S c = S 5 = 5.42-10 -3 m s (hence, ql = P/St = 11,670 W/m2; n = S c = S e = 4.2). 
Heat transfer with the ~urrounding medium in the condensation region is by induced convec- 

tion (~ = 80 W/mS'K); the temperature of the surrounding medium T s = 293~ 

The thermophysical and geometric parameters of the layers are as follows: c I = c~ = 

c e = c c = 502 J/kg-~ c 2 = c 3 = c~ = c~ = 1463 J/kg.~ 01 = P. = 7800 kg/m3; 02 = P3 = 
6000 kg/m3; 61 = ~, = 0.5"I0 -3 m; 62 = 63 = 0.22.10 -3 m; X l = X, = 13 V/m.~ A 2 = X 3 = 
1.07 W/m-~ Hence E I = clp~61 = 1970 j/m2.~ E 2 = c202~ 2 = 1930 J/m2"~ Ea = c3~63n = 
7900 J/m='~ E 4 = c~o,,~4n = 8270 J/m2.~ 

Substituting these values into Eqs. (4) and (7), it is found that TI = 0.8 sec, c a = 
61.4 sec. Then qs, q~, q3, q2 and Ts, T 4, T 3, T z, T l = f(x) are determined from Eqs. (5) 
and (6). The results of the calculations are shown in Fig. 2. For clarity, the time de- 
pendence of the TT heating is shown in dimensionless form: Oi=(Ti - Ts)/(Tis t - T s) = f(T) 
for the wall of the evaporation region ~ (T i = T l) and the wall of the condensation re- 

gion ~5 (Ti = Ts); T!st and Tss t are determined from Eq. (8). 
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The numerical and analytical calculations practically coincide, and therefore ~ and 
~ are shown by single curves. The inertial time obtained numerically (T I = 0.5 sec when 
O! = 0.001) is also very small for the specified initial data, which confirms the hypo- 
thesis that, in such types of TT, thermal conditions set in practically instantaneously. 

NOTATION 

T, T s, temperature of layer and surrounding medium; c, ~, p, 6, S, specific heat, heat 
conduction, density, thickness, and surface area of the given layer; n, dimensionless para- 
meter expressing the ratio of the surface area of the given layer to that of the first layer; 
T, time; r, total thickness of all the layers; q, specific heat flux; R, thermal resistance; 
~, heat-transfer coefficient; P, scattered power; i, layer number; m, total number of layers; 
e, evaporation region; c, condensation region; C, capillary structure. 

LITERATURE CITED 

i. E. M. Gol'dfarb, Thermal Engineering of Metallurgical Processes [in Russian], Metallur- 
giya, Moscow (1967). 

2. V. A. Alekseev and V. A. Aref'ev, Thermal Tubes for the Cooling and Thermostatting of 
Radioelectronic Equipment [in Russian], Energiya, Moscow (1979). 

1121 


